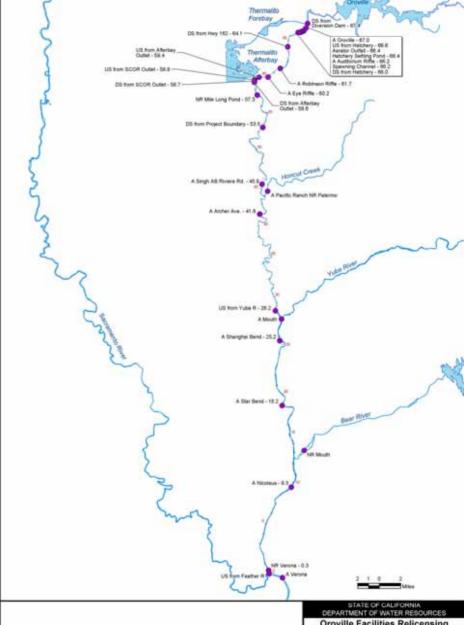


Evaluation of the Timing, Magnitude, and Frequency of Water Temperatures and Their Effects on Chinook Salmon Egg and Alevin Survival

SP-F10 Task 2C



Study Objectives

- The objective of SP-F10 Task 2C was to evaluate the timing, magnitude, and frequency of water temperatures and their effects on Chinook salmon egg and alevin survival in the lower Feather River.
- Original Objective and rationale for change
 - Included water temperature effects on salmonid spawning distribution
 - Water temperature effects on spawning distribution was included in SP-F10 Task 2B

Introduction Study Area

 Feather River from the Fish **Barrier Dam to** confluence with the **Sacramento** River

River Miles

Oroville Facilities Relicensing FERC Project No. 2100

FIGURE 4 1-1 Water Temperature Data Logger Locations Lower Feather River

Introduction Operational Constraints

- Water Temperature Requirements
 - Hatchery objectives
 - Robinson riffle objectives
 - 65°F from June 1 through September 30
 - HFC objectives

Hatchery Water Temperature Objectives				
Water Temperature	Time Period			
52°F	September			
51°F	October and November			
55°F	December through March			
51°F	April through May 15			
55°F	May 15 through May 31			
56°F	June 1 through June 15			
60°F	June 16 through August 15			
58°F	August 16 through August 31			

- USBR Early Life Stage Mortality Model
 - History
- Model Description
 - Life Stages

Year	Reach	Date Spawners Arrive	Peak Spawner Arrival Date	=	Date Spawning Begins	Date of Spawning Peak		Date Eggs Hatch		Emergence Date
2002	LFC	July 2	September 16	n-vivo I	July 15	September 29	Egg M		Alevin I	
	HFC	June 6	October 15	Egg Mc	June 19	October 28	Mortality	After 750°F ATU requirement is	Mortality	After 750°F ATU requirement is
2003	LFC	June 29	September 12	Mortality	July 12	September 25		reached	<u> </u>	reached
	HFC	May 23	October 26		June 5	November 8				

Model Description

Reach Distributions

	Reach	Reach boundaries (RM)	Reach Distribution (%)	
	No.		2002 - 2003	
	1	Fish Barrier Dam (RM 67.3) – RM 65	27.9	
LFC	2	RM 65 – RM 62	38.0	
	3	RM 62 – Upstream of Afterbay (RM 59)	15.2	
	Total		81.1	
	4	Downstream of Afterbay Outlet (RM 59) – RM 55	12.2	
	5	RM 55 – Gridley Bridge (RM 51)	6.7	
	6	Gridley Bridge (RM 51) – RM 47	0.0	
HFC	7	RM 47 – Honcut Creek (RM 44)	0.0	
	8	Honcut Creek (RM 44) – Yuba River (RM 27.7)	0.0	
	9	Yuba River (RM 27.7) – Mouth	0.0	
	Total		12.2	

Model Description

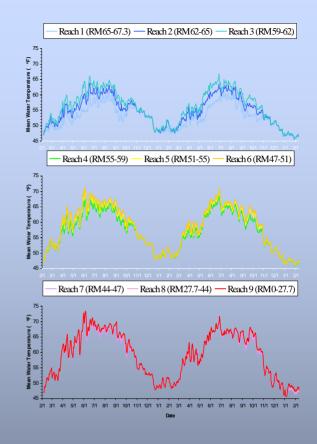
- Inputs
 - Pre-spawning and spawning distributions,
 - Mortality rates,
 - Water temperature
- Output
 - Location

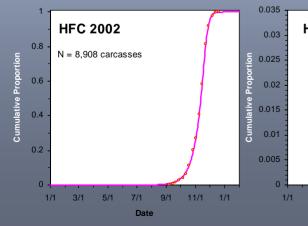
Known Variables/ Values				
	PSD (pre-spawning)			
Distributions	SD (spawning)			
	RD (reach)			
	PSC (pre-spawning)			
Mortality Criteria	EC (egg)			
	FC (pre-emergent fry)			
Water Temperature Data				
Computed Variables/ Values				
Distributions	AD (adult)			
	ESD (spawned eggs)			
	ED (egg)			
	FD (pre-emergent fry)			
Development Variables	EFRY (emergent fry)			
Development variables	FRY (pre-emergent fry)			
	AKIL (eggs in adults)			
Kills (Losses)	EKIL (egg)			
	FKIL (pre-emergent fry)			
	EM (egg)			
Mortalities	PSM (pre-spawning)			
	FM (pre-emergent fry)			

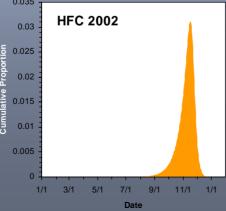
- Model Description
 - Modifications to the model for this analysis
 - Temporal pre-spawning and spawning distributions
 - Water temperatures

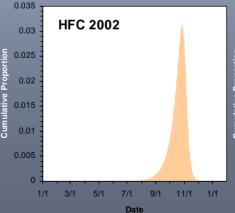
Rationale – carcass survey vs USBR model

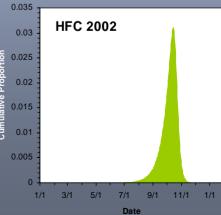
Carcass survey	LFC	HFC
2000	10/20/00	11/22/00
2001	11/01/01	11/15/00
2002	10/26/02	11/22/02
2003	10/24/03	11/29/03
USBR Spawning	11/18/02	12/02/02

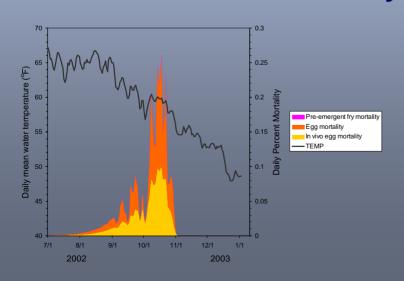

Methodology Data Collection

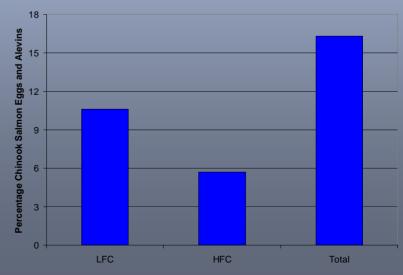

- Carcass survey
 - September 3, 2002 through December 19, 2002
- Daily mean water temperatures
 - February 10, 2002 through April 15, 2003


Methodology Data Collection


Data manipulation


- Carcass survey data
 - Calculate cumulative carcass distribution
 - Calculate daily distribution of carcasses
 - Calculate daily distribution of spawners
 - Calculate daily distribution of pre-spawners
- Water temperature data
 - Estimate daily mean water temperature by reach





Results

- 16.3% of Chinook salmon eggs and alevins were estimated to have been lost in the lower Feather River during the 2002/2003 spawning and egg incubation season.
 - 10.6% of the mortality occurred in the LFC
 - 5.7% of the mortality occurred in the HFC

Results

- The total water temperature induced mortality (16.3%) in the lower Feather River during the 2002/2003 spawning and egg incubation period was composed of:
 - 7.9% in-vivo egg mortality
 - 5.2% in the LFC and 2.7% in the HFC
 - 8.4% in-redd egg mortality
 - 5.4% in the LFC and 3% in the HFC
 - 0.033% alevin mortality
 - 0.033% in the LFC and 0.0% in the HFC

Analyses

Comparison to other rivers

- Lower Feather River Chinook salmon (this analysis)–
 16.3%
- Lower American River Fall-run Chinook salmon 14.5%
- Sacramento River
 - Spring-run Chinook salmon
 - Balls Ferry 20.8%
 - Jelly's Bend 26.5%
 - Fall-run Chinook salmon
 - 13.2%